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Abstract

In the paper the problem of identifying nonlinear dynamic systems, described in nonlinear regression form, is considered, using !nite
and noise-corrupted measurements. Most methods in the literature are based on the estimation of a model within a !nitely parametrized
model class describing the functional form of involved nonlinearities. A key problem in these methods is the proper choice of the model
class, typically realized by a search, from the simplest to more complex ones (linear, bilinear, polynomial, neural networks, etc.). In this
paper an alternative approach, based on a Set Membership framework is presented, not requiring assumptions on the functional form of
the regression function describing the relations between measured input and output, but assuming only some information on its regularity,
given by bounds on its gradient. In this way, the problem of considering approximate functional forms is circumvented. Moreover, noise is
assumed to be bounded, in contrast with statistical methods, which rely on assumptions such as stationarity, ergodicity, uncorrelation, type
of distribution, etc., whose validity may be di3cult to test reliably and is lost in presence of approximate modeling. In this paper, necessary
and su3cient conditions are given for the validation of the considered assumptions. An optimal interval estimate of the regression function
is obtained, providing its uncertainty range for any assigned regressor values. The set estimate allows to derive an optimal identi!cation
algorithm, giving estimates with minimal guaranteed Lp error on the assigned domain of the regressors. The properties of the optimal
estimate are investigated and its worst-case Lp identi!cation error is evaluated. The presented approach is tested and compared with
other nonlinear methods on the identi!cation of a water heater, a mechanical system with input saturation and a vehicle with controlled
suspensions.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider a nonlinear discrete time dynamic system, de-
scribed in the regression form

yt+1 = fo(wt); (1)

where wt=[yt : : : yt−ny+1ut
1 : : : u

t−n1+1
1 : : : ut

m : : : ut−nm+1
m ] and

yt , ut
1; : : : ; u

t
m ∈R, fo : Rn → R, n= ny +

∑m
i=1 ni.
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Suppose that the function fo is not known, but a set
of noise corrupted measurements ỹ t and w̃t of yt and wt ,
t = 1; 2; : : : ; T is available, and it is of interest to make
an inference on the system (e.g. identi!cation, prediction,
smoothing, !ltering, control design, decision making, fault
detection, etc.). In this paper the focus is on the case that the
desired inference is identi!cation of fo. The case that de-
sired inference is prediction, has been considered in Novara
and Milanese (2001) and Milanese and Novara (2002).
In the identi!cation problem investigated here, the aim is

to !nd an estimate f̂ of fo giving small, possibly minimal,
identi!cation error fo− f̂. However, this error is not known
and, since data are !nite and noise corrupted, no reliable esti-
mate on the identi!cation error can be derived if no informa-
tion is available on fo and on noise. The information on fo

is typically given by assuming that it belongs to some subset
F of functions. In some cases, the knowledge of the laws
governing the system (mechanical, economical, biological,
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etc.) generating the data, may allow to have reliable infor-
mation on its structure. In many other situations, due to the
fact that the laws are too complex or not su3ciently known,
this is not possible or not convenient and the usual approach
is to consider that fo belongs to a !nitely parametrized set
of functionsF(�) := {f(w; �)=

∑r
i=1 �i�i(w; �i); �i ∈Rq},

where �=[�; �] and the �i’s are given functions. Then, mea-
sured data are used to derive an estimate �̂ of � and f(w; �̂)
is used as estimate of fo. Basic to this approach is the proper
choice of the parametric family of functions f(w; �), typi-
cally realized by some search on diPerent functional forms of
the �i’s, e.g. linear, polynomial, sigmoidal, wavelet, etc. and
on the number r, (SjGoberg et al., 1995). This search may be
quite time consuming, and in any case leads to approximate
model structures only. The evaluation of the ePects of such
approximation on identi!cation errors appears at present to
be a largely open problem. Another critical point is related
to the fact that the estimate p̂ of p are usually obtained by
a prediction error method, which requires the minimization
of the error function

V (�; �T ) =
1
T

T−1∑
t=0

|ỹ t+1 − f(’t; �)|2; (2)

where ’t is a regression vector and �T = [’0; ’1; : : : ; ’T].
Several choices can be taken for the regressor ’t . Widely
used are the following ones:

’t = w̃t = [ỹ t : : : ỹ t−ny+1

ũt
1 : : : ũ

t−n1+1
1 : : : ũt

m : : : ũt−nm+1
m ]

’t = ŵt = [f(ŵt−1; p) : : : f(ŵt−ny ; p)

ũt
1 : : : ũ

t−n1+1
1 : : : ũt

m : : : ũt−nm+1
m ]

leading to NARX and NOE models, respectively, (see e.g.
SjGoberg et al., 1995). Such an approach is often indicated
as prediction error (PE) method, since V (�; �T ) is an esti-
mate of the prediction error for the given regressor choice.
The functional V (�; �T ) is convex w.r.t. � only if the ba-
sis functions �i are not dependent on the tunable parame-
ters, i.e. � = [�], and ARX regression structure is chosen,
as it happens e.g. for NARX polynomial models. However,
it is well known that !xed basis functions suPers of the
“curse of dimensionality”, i.e. the number r of terms re-
quired for obtaining a given approximation increases expo-
nentially with the dimension n of the regressor space, while
basis functions �i dependent on the tunable parameters, such
as wavelets or neural networks, have much powerful ap-
proximation properties, requiring only polynomial growth
(Barron, 1993; Hornik, Stinchcombe,White, & Auer, 1994).
Unfortunately, with such basis functions, V (�; �T ) is no
more convex w.r.t. �, even for an ARX regression structure,
giving rise to possible deteriorations in approximation, due
to trapping in local minima during its minimizations. Other
problems arise in giving a measure of identi!cation error

fo(w) − f(w; �̂). Under the standard assumption that noise
aPecting measurements is a stochastic process, the quality
of identi!cation is usually measured by the variance of this
error. However, no reliable !nite sample results on the es-
timate of this variance are available. Moreover, in case of
approximate model class, where fo(w) �∈ F(�), a bias term
is present, whose reliable evaluation is also di3cult.
In order to circumvent such problems, in this paper an al-

ternative approach is taken, formulating the problem in a Set
Membership (SM) framework, used in linear systems identi-
!cation to deal with approximate model structures and !nite
sample accuracy evaluation, see e.g. Milanese and Tempo
(1985); Milanese and Vicino (1991); Milanese, Norton, Piet
Lahanier, and Walter (1996); Partington (1997) and Chen
and Gu (2000). No assumptions on the functional form of
fo is required, and an assumption on its regularity is used
instead, given by bounds on the gradient of fo. An optimal
estimate of fo, having minimal guaranteed Lp identi!cation
error is derived, not requiring iterative minimization and thus
avoiding trapping in local minima. The optimal estimate is
derived evaluating tight bounds on fo. These bounds give a
measure of achieved accuracy in evaluating fo, which can
be useful for successive robust analysis or design using the
identi!ed model, e.g. for guaranteed stability analysis of er-
rors in simulation for future inputs (Sontag, 1992; Milanese
& Novara, 2003) or for robust control design (Freeman &
Kokotovic, 1996; Qu, 1998).
It can be noted that the proposed approach has strong con-

nections with method used for approximation, interpolation
or optimization of multivariable functions with bounded
derivatives, from the knowledge of a !nite number of their
values (see e.g. Traub, Wasilkowski, & Wo>zniakowski,
1988; Novak, 1988; Wasilkowski & Wo>zniakowski, 2001
and the references therein). In this literature, noise free
measurements are typically assumed, and weaker optimal-
ity concepts are considered than the one of the present
paper (see the remark at the end of next section for a more
speci!c discussion).
The paper is organized as follows. In Section 2 the identi-

!cation problem is formulated in a SM framework, de!ning
the type of assumptions considered, the guaranteed identi!-
cation error and optimality concept. In Section 3, necessary
and su3cient conditions are given for assumptions valida-
tion (intended as consistency of assumptions with measured
data) and it is shown how they can be used for assessing the
constants appearing in the assumptions. Also, tight lower
and upper boundsf(w) and Wf(w) of fo(w) are derived. In
Section 4, Hyperbolic Voronoi Diagrams are introduced and
used to investigate the properties of the boundsf(w) and
Wf(w). In Section 5, an optimal point estimate of fo, hav-
ing minimal guaranteed Lp identi!cation error, is obtained
and its properties are investigated. In Section 6, two varia-
tions of the method are proposed, which may give signi!-
cant improvement, allowing adaption to properties of data,
such as variable gradient bounds and quite diPerent mag-
nitude of gradient components. In Section 7, the overall
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identi!cation procedure is summarized, indicating step-by-
step the operations to be performed. In Section 8, the pre-
sented method is tested and compared with other nonlinear
methods on the identi!cation of a water heater, a mechanical
system with input saturation and of a vehicle with controlled
suspension.

2. The nonlinear SM approach

Consider that sets of noise corrupted data Ỹ T =
[ỹ 2; ỹ 3; : : : ; ỹ T+1] and W̃ T = [w̃1; w̃2; : : : ; w̃T] generated by
(1) are available. Then

ỹ t+1 = fo(w̃t) + dt; t = 1; 2; : : : ; T; (3)

where the term dt accounts for the fact yt+1 and wt are not
exactly known, a setting often indicated in the literature as
error-in-variables.
The aim is to derive an estimate f̂ of fo from avail-

able measurements (Ỹ T; W̃ T), i.e. f̂ = �(Ỹ T; W̃ T). The
operator �, called identi!cation algorithm, should be
chosen to give small (possibly minimal) Lp(W ) error
e(f̂) = ‖fo − f̂‖p, where W is a given bounded set

in Rn and ‖f‖p
:=
[∫

W |f(w)|p dw]1=p, p∈ [1;∞) and
‖f‖∞

:= ess-supw∈W |f(w)|. This error is not known, since
from available data it is only known that fo ∈F(Ỹ T; W̃ T),
the set of all f that could have generated the data. If no
assumptions is made on fo, this set, even in case of exact
measurements, is unbounded, since the mapping gener-
ating data from f is not injective, i.e. in!nitely many f
measured at w̃t , t = 1; : : : ; T give the same values ỹ t+1,
t = 1; : : : ; T . Then, whatever algorithm � is chosen, no in-
formation on the identi!cation error can be derived, unless
some assumptions are made on the function fo and the
noise d. The typical approach in the literature is to assume
a !nitely parametrized functional form for fo (linear, bi-
linear, neural network, etc.) and statistical models on the
noise (SjGoberg et al., 1995). In the present SM approach,
diPerent and somewhat weaker assumptions are taken, not
requiring the selection of a functional form for fo, but re-
lated to its rate of variation. Moreover, the noise sequence
DT = [d1; d2; : : : ; dT] is only supposed to be bounded.
Prior assumptions on fo:

fo ∈F(�) := {f∈C1(W ) : ‖f′(w)‖6 �;∀w∈W}:
Prior assumptions on noise:

DT ∈D := {[d1; d2; : : : ; dT] : |dt |6 !t ; t = 1; 2; : : : ; T}:
Here, f′(w) denotes the gradient of f(w) and ‖x‖ :=√∑n

i=1 x2i is the Euclidean norm.
A key role in this Set Membership framework is played

by the Feasible Systems Set, often called “unfalsi!ed sys-
tems set” , i.e. the set of all systems consistent with prior
information and measured data.

De�nition 1 (Feasible Systems Set). The Feasible Systems
Set FSST is

FSST := {f∈F(�) : |ỹ t+1 − f(w̃t)|6 !t ;

t = 1; 2; : : : ; T}: (4)

The feasible systems set FSST summarizes all the infor-
mation on the mechanism generating the data that is avail-
able up to time T . If prior assumptions are “true” , then
fo ∈FSST, which is an important property for evaluating the
accuracy of inferences that can be done on the system. In
particular, it follows that fo(w) is bounded as

f(w)6fo(w)6 Wf(w);∀w∈W; (5)

where

Wf(w) = sup
f∈FSST

f(w);

f(w) = inf
f∈FSST

f(w): (6)

Provided that the prior assumptions hold, Wf(w) and f(w)
are the tightest upper and lower bounds of fo(w) and are
called optimal bounds.
As typical in any identi!cation theory, the problem of

checking the validity of prior assumptions arises. The only
thing that can be actually done is to check if prior assump-
tions are invalidated by the data, evaluating if no system
exists consistent with data and assumptions, i.e. if FSST

is empty. However, it is usual to introduce the concept of
prior assumption validation as consistency with the mea-
sured data, i.e. FSST not empty (Milanese et al., 1996; Chen
& Gu, 2000).

De�nition 2 (Validation of prior assumptions). Prior as-
sumptions are considered validated if FSST �= ∅.

Note that the fact that the prior assumptions are validated,
i.e. are consistent with the present data, does not exclude
that they may be invalidated by future data (Popper, 1969).
In the following, the FSST is assumed to be non-empty. If
empty, the prior assumptions on the system and the noise
are invalidated by data and have to be suitably modi!ed to
give a non-empty FSST as discussed in Section 3.
An identi!cation algorithm � is an operator mapping

all available information about function fo, noise d, data
(Ỹ T; W̃ T) until time T , summarized by FSST, into an esti-
mate f̂ of fo:

�(FSST) = f̂ � fo:

The related Lp error is:

e(f̂) = e(�(FSST)) = ‖fo − f̂‖p:

This error cannot be exactly computed, since it is only
known that fo ∈FSST, but its tightest bound is given by
e(f̂)6 supf∈FSST ‖f − f̂‖p. This motivates the following
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de!nition of the identi!cation error, often indicated as local
worst-case or guaranteed error.

De�nition 3 ((Local) identi3cation error). The (local)
identi!cation error of f̂ = �(FSST) is

E[�(FSST)] = E(f̂) := sup
f∈FSST

‖f − f̂‖p:

Looking for algorithms that minimize this identi!cation
error, leads to the following optimality concepts.

De�nition 4 ((Locally) optimal algorithm). An algorithm
�∗ is called (locally) optimal if

E[�∗(FSST)] = inf
�
E[�(FSST)]

= inf
f̂

sup
f∈FSST

‖f − f̂‖p = rI :

Note that an optimal algorithm, if it exists, may give an
optimal estimate f∗ = �∗(FSST) not necessarily in FSST.
The quantity rI , called (local) radius of information, gives
the minimal identi!cation error that can be guaranteed
by any estimate based on the available information up to
time T .

Remark. The (local) identi!cation error actually depends
on fo and DT, i.e. E(f̂)=E(f̂; fo; DT). A global identi!ca-
tion error of given algorithms � is often considered, de!ned
as:

Eg(�) := sup
fo∈F(�)
DT∈D

E(�(FSST); fo; DT):

An algorithm �g is called globally optimal if Eg(�g) =
inf�Eg(�). This is the optimality concept usually investi-
gated in the approximation theory literature (Traub et al.,
1988; Novak, 1988; Wasilkowski & Wo>zniakowski, 2001).
Note that a (locally) optimal algorithm �∗ is globally
optimal, but �g is not in general locally optimal. Thus,
the (local) optimality concept investigated in this paper
is stronger than the global optimality concept investigated
in the above cited literature. As just noted before, for
given algorithm, the tightest bound on ‖fo − �(FSST)‖ is
given by E(�(FSST); fo; DT). The algorithm �∗ minimizes
E(�(FSST); fo; DT) for any fo and DT, while �g minimizes
it only for worst case f∈F(�) and noise sequence in D.
Then the ratio:

E(�g(FSST); fo; DT)
E(�∗(FSST); fo; DT)

:= �(�g(FSST); fo; DT)

give a measure of the degradation in the guaranteed iden-
ti!cation error of using �g instead of �∗, for the given fo

and noise realization DT. Clearly, �¿ 1, indicating that �g

cannot be better than �∗. Indeed, relatively simple globally

optimal algorithms �g
L exist (e.g. linear in the measured val-

ues) for which �(�g
L; fo; DT) may be arbitrarily large (see

Traub et al., 1988). Thus, globally optimal algorithms may
lead to estimates with large degradation with respect locally
optimal estimates. This motivates the interest for investigat-
ing (locally) optimal algorithms �∗. In the rest of the paper
the local optimality concept will be considered and the term
(local) will be omitted.

3. Assumptions validation and optimal bounds evaluation

Necessary and su3cient conditions for checking the
assumptions validity are now given. Let us de!ne the
functions:

fu(w)
:= min

t=1;:::;T
( Wht + �‖w − w̃t‖);

fl(w)
:= max

t=1;:::;T
(ht − �‖w − w̃t‖); (7)

where Wht := ỹ t+1 + !t and ht := ỹ t+1 − !t .

Theorem 1.
(i) A necessary condition for prior assumptions to be

validated is: fu(w̃t)¿ ht ; t = 1; 2; : : : ; T .
(ii) A su5cient condition for prior assumptions to be

validated is: fu(w̃t)¿ht; t = 1; 2; : : : ; T .

Proof. We have to prove that if prior assumptions are val-
idated, i.e. FSST �= ∅, then fu(w̃t)¿ ht , t = 1; 2; : : : ; T .
Let f∈C1(W ). From mean value theorem it follows that

for every w∈W , and for each t=1; 2; : : : ; T; a ŵt ∈W exists
such thatf(w)=f(w̃t)+f′(ŵt)·(w−w̃t). Now letf∈FSST,
then f(w)6 ỹ t+1 + !t + ‖f′(ŵt)‖ ‖w− w̃t‖6 ỹ t+1 + !t +
�‖w − w̃t‖. This holds for ∀w∈W and t = 1; 2; : : : ; T then,
from (7) we have

fu(w)¿f(w);∀w∈W: (8)

Similarly it can be proven that:

fl(w)6f(w);∀w∈W: (9)

From (8), (9) it follows that fu(w̃t)¿fl(w̃t), t=1; 2; : : : ; T
and from (7) it follows that fl(w̃t)¿ ht , t=1; 2; : : : ; T , then
fu(w̃t)¿ ht , t = 1; 2; : : : ; T .
(ii) Suppose that fu(w̃t)¿ht , t = 1; 2; : : : ; T . We have

to prove that FSST �= ∅, i.e. that a function f∈F(�) can
be found such that |ỹ t+1 − f(w̃t)|6 !t , t = 1; 2; : : : ; T . For
given w∈W , let Wt and t be such that Wt=argmint ( Wh

t+�‖w−
w̃t‖) and t=argmaxt (h

t − �‖w− w̃t‖). Thus, the following
inequalities hold: fu(w)− fl(w) = Wh Wt − ht + �(‖w − w̃ Wt‖+
‖w− w̃t‖)¿ Wh Wt −ht + �‖w̃ Wt − w̃t‖¿fu(w̃t)−ht ¿ 0. Since
w is an arbitrary point of W , then

fl(w)¡fu(w);∀w∈W: (10)

By de!ningfc(w)=1
2 [fl(w)+fu(w)], this inequality implies

that

fl(w)¡fc(w)¡fu(w);∀w∈W: (11)
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Fig. 1. Example of validation surface.

On the other hand, from (7) it follows fu(w̃t)6 ỹ t+1 + !t ,
fl(w̃t)¿ ỹ t+1 − !t , ∀t, which, together with (11), implies
ỹ t+1 − !t6fl(w̃t)¡fc(w̃t)¡fu(w̃t)6 ỹ t+1 + !t , ∀t, and
then |ỹ t+1 − fc(w̃t)|¡!t , t = 1; 2; : : : ; T , which can be
expressed as

|ỹ t+1 − fc(w̃t)|6 !t − ,; ,¿ 0; t = 1; 2; : : : ; T: (12)

Note that fc �∈ FSST, since |ỹ t+1 − fc(w̃t)|6 !t ,
t = 1; 2; : : : ; T , but fc �∈ F(�), being not everywhere diPer-
entiable, see Theorem 6. However, a function belonging to
FSST can be obtained by suitably approximating fc.

Let F(�) be the closure of F(�) with respect to (wrt)
the norm ‖f‖S = ‖f‖∞ + ‖f′‖2. The linear space C1(W )
of continuously diPerentiable functions over W , embedded
with the norm ‖ · ‖S is not a Banach space, since it is not
complete. Let F(W ) be the Banach space obtained by com-
pleting C1(W ) wrt ‖ · ‖S . Given a Cauchy sequence {fm},
limm;l→∞ ‖fm −fl‖S =0 implies limm;l→∞ ‖fm −fl‖∞ =
0 and limm;l→∞ ‖f′

m − f′
l ‖2 = 0. Since fm ∈C1(W ), ∀m,

‖fm‖∞ = supw∈W |fm(w)| and then convergence of ‖fm −
fl‖∞ is uniform. On the contrary, convergence of ‖f′

m −
f′
l ‖2 is almost everywhere (a.e.) only. Then F(W ) is the

space of continuous functions, diPerentiable a.e. in W and:
F(�) = {f∈F(W ); ‖f′(w)‖6 �; a:e: in W}. From Theo-
rem 6 in Section 5 it follows that fc ∈F(�). SinceF(�) is
the closure of F(�) wrt the norm ‖f‖S , F(�) is dense in
F(�), i.e. ∀-¿ 0 a function f- ∈F(�) can be found such
that ‖fc−f-‖S ¡-. Since ‖f‖S ¿ ‖f‖∞=supw∈W |f(w)|,
∀f, it follows that
|fc(w) − f-(w)|¡-; ∀w: (13)

Then, from (12) and (13) it results: |ỹ t+1−f-(w̃t)|6 |ỹ t+1

−fc(w̃t)|+|fc(w̃t)−f-(w̃t)|6 !t−,+-, t=1; 2; : : : ; T . Tak-

ing -¡,, we have that f- ∈F(�) and |ỹ t+1−f-(w̃t)|6 !t ,
t = 1; 2; : : : ; T , thus proving that FSST �= ∅.

Note that there is essentially no “gap” between the neces-
sary and su3cient conditions, since condition Wf(w̃t)¿ ht +
-, t = 1; 2; : : : ; T is su3cient for any -¿ 0 arbitrarily small
and necessary for - = 0. In the rest of paper it is assumed
that the su3cient condition holds. If not, values of the con-
stants appearing in the assumptions on function fo and on
noise dt have to be suitably modi!ed. The validation Theo-
rem 1 can be used for assessing the values of such constants
so that su3cient condition holds.
Let us consider a relative plus absolute model for the error

bound given as

|dt |6 !t = !r|yt+1| + !a; !r ; !a¿ 0

In the space (!r ; !a; �), the function

�∗(!r ; !a)
:= inf

!r ; !a;�:FSST �=∅
� (14)

individuates a surface that separate falsi!ed values of !r ; !a
and � from validated ones, see Fig. 1, where the surface
related to the Example 1 presented in Section 8 is shown.
Clearly, !r ; !a and � must be chosen in the validated pa-

rameters region, possibly using information from the exper-
imental setting for assessing e.g. the respective relevance
of relative and absolute components of the noise. On the
other hand, useful information on � values can be obtained
by deriving (e.g. from a neural networks approximation or
directly from data) some estimates of f′

o(w). See Section 8
and the examples for more detailed discussion on the use of
this procedure for the selection of (!r ; !a; �) values.

The functions fu and fl allow also to solve the problem
of !nding the optimal interval estimate of fo(w) for given
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w∈W . In fact, from (5) and (6) it follows that the smallest
interval guaranteed to include fo(w), is given by the interval
[f(w); Wf(w)], wheref(w) and Wf(w) are the optimal bounds.
The following theorem shows that the optimal bounds are
actually given by fu and fl.

Theorem 2. The functions fu and fl given in (7) are opti-
mal bounds, i.e.

Wf(w) = min
t=1;:::;T

( Wht + �‖w − w̃t‖) := fu(w);

f(w) = max
t=1;:::;T

(ht − �‖w − w̃t‖) := fl(w): (15)

Proof. Inequalities (8) and (9) hold for every f∈FSST;
then fl(w)6fo(w)6fu(w), ∀w∈W . These bounds on
fo imply the following bounds on noise d : fl(w̃t) −
ỹ t+16 ỹ t+1 − dt = fo(w̃t)6fu(w̃t) − ỹ t+1, t = 1; 2; : : : ;
T − 1, then

dt ∈Bt
d = {d̂ : fl(w̃t)6 ỹ t+1 − d̂6fu(w̃t)}:

For given w∈W , let Wt=argmint=1; :::;T−1 (ỹ
t+1 + !t + �-t +

�‖w − w̃t‖). Also, let f∈FSST. Therefore, a ŵ Wt ∈W and a
dt ∈Bt

d exist such that f(w)= ỹ Wt+1−d Wt+f′(ŵ Wt) ·(w− w̃ Wt),
so that

sup
dt∈Bt

d; t=1;:::;T−1
‖f′(ŵt)‖6�; t=1;:::;T−1

f(w)

= sup
d Wt∈Bd

Wt

‖f′(ŵ Wt)‖6�

[ỹ Wt+1 − d Wt + f′(ŵ Wt) · (w − w̃ Wt)]

= sup
d Wt∈Bd

Wt

(ỹ Wt+1 − d Wt) + sup
‖f′(ŵ Wt)‖6�

[f′(ŵ Wt) · (w − w̃ Wt)]

=fu(w̃
Wt) + �‖w − w̃ Wt‖:

Since fu(w̃
Wt)= ỹ Wt+1+! Wt and fu(w)= ỹ Wt+1+! Wt+�‖w−w̃ Wt‖,

we have that

sup
dt∈Bt

d; t=1;:::;N
‖f′(ŵt)‖6�; t=1;:::;N

f(w) = ỹ Wt+1 + ! Wt + �‖w − w̃ Wt‖ = fu(w):

This holds for all w∈W , then fu(w) = supf∈FSST f(w) =
Wf(w). The proof that fl(w) = inff∈FSST f(w) =f(w) is
similar.

4. Hyperbolic Voronoi Diagrams (HVD)

In this section the concept of hyperbolic Voronoi diagram
(HVD) is introduced. The HVD are a generalization of stan-
dard Voronoi diagrams (see e.g. Edelsbrunner, 1987) and
are used to investigate the properties of the optimal bounds
f and Wf and of the optimal identi!cation algorithm derived
in the next section. The HVD are de!ned as follows.

Consider the set of points: W̃ T := [w̃1; w̃2; : : : ; w̃T] and a
T × T antisymmetric matrix 1. Then de!ne:

• The (n − 1)-dimensional hyperbola Ht3:

Ht3 := {w∈Rn : ‖w − w̃t‖ − ‖w − w̃3‖ = 1t3; t �= 3}
• The n-dimensional regions St3 containing w̃t :

St3 := {w∈Rn : ‖w − w̃t‖ − ‖w − w̃3‖¡13t; t �= 3}
• The hyperbolic cell Ct : Ct :=

⋂
3�=t S

t3.

Note that some cell Ct may be empty (see Theorem 3
below). The intersections between the surfaces Ht3 gener-
ate other cells of dimension d, with 06d6 n − 1 called
d-faces. The cells Ct are called n-faces while the 0-faces are
also called vertices.

De�nition 5 (Hyperbolic Voronoi Diagram). The Hyper-
bolic Voronoi Diagram V (W̃ T; 1) is de!ned as the set of all
d-faces, 06d6 n.

If 1t3 = 0;∀t; 3, all hyperbola Ht3 degenerate into hy-
perplanes and the de!nitions become the ones of standard
Voronoi diagrams (Edelsbrunner, 1987). The next theorem
shows some properties of HVD useful for characterizing the
optimal bounds Wf andf.

Theorem 3.
(i) Ct �= ∅ ⇔ ‖w̃t − w̃3‖¿1t3;∀3 �= t.
(ii) Ct ∩ C3 = ∅, t �= 3.
(iii)

⋃T
t=1 [Ct] = Rn; where [Ct] is the closure of Ct .

Proof. ⇒: Suppose that Ct �= ∅, then a w exists such that
‖w − w̃t‖ − ‖w − w̃3‖¡13t;∀3 �= t. But the triangular in-
equality implies: ‖w − w̃3‖ − ‖w − w̃t‖6 ‖w̃t − w̃3‖, then:
‖w̃t − w̃3‖¿ − 13t = 1t3;∀3 �= t.

⇐: ‖w̃t−w̃3‖¿1t3=−13t ;∀3 ⇒ −‖w̃t−w̃3‖¡13t;∀3 ⇒
‖w̃t − w̃t‖ − ‖w̃t − w̃3‖¡13t;∀3 ⇒ w̃t ∈Ct ⇒ Ct �= ∅.
(ii) Ct ∩C3 = (St1 ∩ St2 ∩ · · ·)∩ (S31 ∩ S32 ∩ · · ·) = · · · ∩

St3 ∩ S3t ∩ · · · = ∅, being St3 ∩ S3t = ∅ by de!nition.
(iii) Let 4t , t=1; 2; : : : ; T a collection of values such that

1t3=4t −43, t; 3=1; 2; : : : ; T . The function g(w)=mint(4t+
‖w − w̃t‖), is everywhere de!ned on Rn then, for ∀w∈Rn,
there exists at least a t such that 4t +‖w− w̃t‖6 43+‖w−
w̃3‖, ∀3. This implies that w∈ St3 ∪ Ht3;∀3, i.e. w∈ [Ct].
Thus, every w∈Rn belongs to at least one set [Ct], then⋃T

t=1 [Ct] = Rn.

This result shows that the non-empty cells of a HVD give
a complete partition of Rn, so that any w∈Rn belongs to
some (n−1)-dimensional hyperbola Ht3 or to one (and only
one) cell Ct .
Now, for given Wf and f, consider the HVD WV and V

de!ned as

WV := V (W̃ T; W1); V := V (W̃ T; 1);

where W13t=( Wh3− Wht)=�, 13t=(ht−h3)=�. Let WCt , t=1; 2; : : : ; T
be the cells of WV andC t , t = 1; 2; : : : ; T be the cells of V.
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Fig. 2. Example of optimal upper bound Wf(w).

The following result and the comments below show the con-
nection between the HVD WV andV and the optimal bounds
Wf(w) andf(w).

Theorem 4.
(i) Let WCt be a non-empty cell of WV . Then: Wf(w) = Wht +

�‖w − w̃t‖;∀w∈ WCt .
(ii) Let C t be a non-empty cell of V. Then:f(w) = ht −

�‖w − w̃t‖;∀w∈C t .

Proof. From the de!nition of HVD we have that, if w∈ WCt ,
then ‖w−w̃t‖−‖w−w̃3‖¡ W13t , 3=1; 2; : : : ; T . But W13t=( Wh3−
Wht)=�, then Wht + �‖w− w̃t‖¡ Wh3+ �‖w− w̃3‖, 3=1; 2; : : : ; T .
Since Wf(w) =min3=1;2; :::;T ( Wh3 + �‖w − w̃3‖), it follows that
Wf(w) = Wht + �‖w − w̃t‖, thus proving (i). The proof of (ii)
is analogous.

This theorem shows that, for w belonging to a non-empty
cell WCt , the function Wf(w) is given by the cone in Rn × R
de!ned by the equation y= Wht + �‖w − w̃t‖, with vertex of
coordinates (w̃t ; Wht) and axis along the y-dimension. Since
from Theorem 3 the non-empty cells of WV give a complete
partition of the regressor space Rn, Wf is a piece-wise conic
function over a suitable partition of Rn that can be derived
from the HVD WV . Indeed, the intersection of two cones
y= Wht +�‖w− w̃t‖ and y= Wh3+�‖w− w̃3‖, projected on Rn

gives the hyperbola WHt3={w∈Rn : ‖w−w̃t‖−‖w−w̃3‖= W1t3;
t �= 3} that de!ne the HVD WV . Similar considerations hold
for the relation betweenf andV.
In Figs. 2 and 3 the upper bound Wf and the cell partition

of WV are reported for an example, with w = (w1; w2)∈R2.
Note that because of the piece-wise conic nature of Wf, the
level contours of Wf in each cell are circular.

The next result shows thatfand Wf are diPerentiable almost
everywhere (a.e.) in W , i.e. except a set of zero measure.
Let WVd and V d be the sets of the d-faces of the HVD WV
and V, respectively, with d¡n. Let coM and co WM be the
complements in W of the sets M :=

⋃
d¡n V

d ∪ W̃ T and
WM :=

⋃
d¡n

WVd ∪ W̃ T, i.e. M∪ coM=W and WM ∪ co WM =W .
Note that M and WM are sets of zero measure in Rn. In fact,
W̃ T is a set composed by a !nite number of points and WVd,
V d are composed by a !nite number of d-dimensional sets,
with d¡n.

Theorem 5. The functions f and Wf are Lipschitz-
continuous on W . Moreover:

(i) f is di7erentiable ∀w∈coMand:
‖f′(w)‖ = �; ∀w∈ coM

(ii) Wf is di7erentiable ∀w∈co WM and:

‖ Wf
′
(w)‖ = �; ∀w∈ co WM:

Proof. Let ŵ; w∈W and Wt=argmin
t
( Wht+�‖w− w̃t‖). From

Theorem 2 it follows Wf(ŵ)6 Wh Wt + �‖ŵ − w̃ Wt‖ and Wf(w) =
Wh Wt + �‖w− w̃ Wt‖. This implies Wf(ŵ)− Wf(w)6 �(‖ŵ− w̃ Wt‖−
‖w − w̃ Wt‖)6 �‖ŵ − w‖. Similarly it results that Wf(ŵ) −
Wf(w)¿−�‖ŵ−w‖, then | Wf(ŵ)− Wf(w)|=‖ŵ−w‖6 �. This
holds for ∀w; ŵ∈W , then Wf is Lipschitz-continuous on W .
The Lipschitz-continuity off can be analogously proven.
Let w an arbitrary point of coM. Thus w belongs to a set

Ĉ t :=C t−w̃t , where the notation A−B indicates the diPerence
between the sets A and B andCt is a cell of HVDV .Being
Ĉ t an open set and since from Theorem 4 we havef(w) =
ht − �‖w − w̃t‖, ∀w∈Ĉ t , it follows thatf is diPerentiable
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Fig. 3. Level curves of Wf(w) and corresponding HVD WV .

onĈ t and ‖f′(w)‖= �, thus proving (i). The proof of (ii) is
analogous.

5. Optimal algorithm and estimate

Let the function fc be de!ned as

fc(w)
:= 1

2 [f(w) + Wf(w)]; (16)

wheref(w) and Wf(w) are given in Theorem 2. We will show
that the algorithm �c(FSST)=fc is optimal for any Lp norm.
In order to prove this property, we need some preliminary
results about f, Wf and fc. At !rst, it is shown that fc is
Lipschitz-continuous and almost everywhere diPerentiable.
Let WVd and V d be the sets of the d-faces of WV and V

respectively, with d¡n. Let coM the complement in W of
the set M :=

⋃
d¡n( WV

d ∪V d)∪W̃ T, i.e. M ∪coM =W . Note
that M is a set of zero measure in Rn. In fact, W̃ T is a set
composed by a !nite number of points and WVd,V d are sets
composed by a !nite number of d-dimensional sets, with
d¡n.

Theorem 6.
(i) The function fc is Lipschitz-continuous on W .
(ii) fc(w) is di7erentiable ∀w∈ coM and:

‖f′
c (w)‖6 �; ∀w∈ coM

Proof. (i) In Theorem 5 it has been proven thatfand Wf are
Lipschitz-continuous on W . Then it follows that also fc is
Lipschitz-continuous on W .
(ii) Let w an arbitrary point of coM . Thus w belongs

to a set Ĉ Wtt := ( WC Wt ∩C t) − (w̃t ∪ w̃ Wt), where the nota-
tion A − B indicates the diPerence between the sets A and
B, WC Wt andC t are cells of HVD WV andV, respectively. Be-
ing Ĉ Wtt an open set and fc(w) = 1

2 (h
t − �‖w − w̃t‖ + Wh Wt +

�‖w − w̃ Wt‖), ∀w∈ Ĉ Wtt , it follows that fc is diPerentiable on
Ĉ Wtt . On the other hand, diPerentiating (16), it follows that
‖f′

c (w)‖6 1=2[‖f′(w)‖ + ‖ Wf
′
(w)‖]. This, in view of The-

orem 5, implies that ‖f′
c (w)‖6 �, ∀w∈ coM .

We need also the following technical Lemma.

Lemma 1. Let FSST be the closure of FSST with re-
spect to (wrt) norm ‖f‖S = ‖f‖∞ + ‖f′‖2. Then, f; Wf;

fc ∈FSST.

Proof. The linear space C1(W ) of continuously dif-
ferentiable functions over W , embedded with the norm
‖ · ‖S is not a Banach space, since it is not complete.
Let F(W ) be the Banach space obtained by complet-
ing C1(W ) wrt ‖ · ‖S . Using the same argument of
the proof of theorem 1, F(W ) results to be the space
of continuous functions, diPerentiable a.e. in W and
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FSST = {f∈F(�) : |ỹ t+1 − f(w̃t)|6 !t ; t = 1; 2; : : : ; T},
whereF(�) = {f∈F(W ); ‖f′(w)‖6 �; a:e: in W}.
From Theorem 5 it follows that f; Wf∈F(�) and from

Theorem 6 that fc ∈F(�). To prove the lemma, it remains
to be proved that |ỹ t+1 − f(w̃t)|6 !t , t = 1; 2; : : : ; T for
f =f; Wf;fc.
Since it is assumed that the su3cient condition of

Theorem 1 is veri!ed, we have:

Wf(w̃t)¿ỹ t+1 − !t ; t = 1; 2; : : : ; T: (17)

From Theorem 2 it follows:

Wf(w̃t)6 ỹ t+1 + !t ; t = 1; 2; : : : ; T; (18)

f(w̃t)¿ ỹ t+1 − !t ; t = 1; 2; : : : ; T: (19)

Inequalities (17) and (8) are equivalent to the required
inequality for Wf.
Sincef(w)6 Wf(w);∀w∈W , from (18) it follows:

f(w̃t)6 ỹ t+1 + !t ; t = 1; 2; : : : ; T: (20)

Inequalities (19) and (20) are equivalent to the required
inequality forf.
From (17) and (19) it follows that:

f(w̃t) + Wf(w̃t)¿ 2(ỹ t+1 − !t); t = 1; 2; : : : ; T: (21)

and from (18) and (20) that:

f(w̃t) + Wf(w̃t)6 2(ỹ t+1 + !t); t = 1; 2; : : : ; T: (22)

Inequalities (21) and (22) are equivalent to the required
inequality forfc, thus concluding the proof of the claim.

Now we can prove the main result of this section.

Theorem 7. For any Lp(W ) norm, with p∈ [1;∞]:
(i)The identi3cation algorithm�c(FSST)=fc is optimal.
(ii) E(fc) = 1

2‖ Wf −f‖p = rI = inf� E[�(FSST)].

Proof. From Theorems 5 and 6 it follows that Wf;fandfc are
bounded on W which is bounded. Then, Wf;f; fc ∈Lp(W ).
The diameter of FSST is

d(FSST) = sup
f1 ;f2∈FSST

‖f1 − f2‖p

6

[∫
W

| sup
f1∈FSST

f1(w)

− inf
f2∈FSST

f2(w)|p dw
]1=p

= ‖ Wf −f‖p: (23)

From Lemma 1, since FSST is dense in FSST wrt ‖ · ‖S , it
follows that ∀-¿ 0;∃ Wf -;f- ∈FSST such that ‖ Wf− Wf -‖S =

‖ Wf − Wf -‖∞ + ‖ Wf
′ − Wf′

-‖2 ¡-, ‖f−f-‖S = ‖f−f-‖∞ +
‖f′ −f′

-‖2 ¡- and consequently ‖ Wf − Wf -‖∞ ¡- and

‖f−f-‖∞ ¡-. Then

‖ Wf - −f-‖p¿ ‖ Wf −f‖p − ‖ Wf - − Wf‖p

−‖f−f-‖p = ‖ Wf −f‖p − 2-8p; (24)

where 8p = [
∫
W dw]1=p. Since - can be taken as small as

desired, (23) and (24) implies that

d(FSST) = ‖ Wf −f‖p: (25)

On the other hand,

E(fc) = sup
f∈FSST

‖f − fc‖p

6
∫
W

[
sup

f∈FSST
|f(w) − fc(w)|p dw

]1=p

=
1
2
‖ Wf −f‖p =

1
2
d(FSST): (26)

From De!nitions 3 and 4 we have:

rI
:= inf

f̂
sup

f∈FSST
‖f̂ − f‖p = r(FSST)6E(fc): (27)

Then, from (26), (27) and the well known relations
r(FSST)¿d(FSST)=2 (Traub & Wo>zniakowski, 1980), it
follows that E(fc) = rI = 1

2 ‖ Wf −f‖p thus proving claims
(i) and (ii).

Note that the optimal estimate fc is a ChebicheP center
of FSST in Lp norm for any p∈ [1;∞], i.e.:

sup
f̃∈FSST

‖f̃ − fc‖p = inf
f

sup
f̃∈FSST

‖f̃ − f‖p

but it does not belong to FSST, since it is not diPerentiable
everywhere. However, functions belonging to FSST approx-
imating fc in Lp norm with arbitrary precision can be found,
as stated in the following result, which is an immediate con-
sequence of Lemma 1.

Theorem 8. ∀-¿ 0, ∀p∈ [1;∞], ∃f- ∈FSST such that
‖f- − fc‖p ¡-.

Proof. From Theorem 6 in Section 5 it follows that
fc ∈FSST. Since FSST is the closure of FSST wrt the norm
‖f‖S , FSST is dense in FSST, and consequently ∀,¿ 0 a
function f, ∈FSST can be found such that ‖fc −f,‖S ¡,.
Since ‖f‖S ¿ ‖f‖∞, ∀f, we have that
‖fc − f,‖∞ ¡,: (28)

Moreover, since ‖f‖∞ = supw∈W |f(w)|, it follows that
|fc(w) − f,(w)|¡,, ∀w. This implies:

‖fc − f,‖p ¡,8p; (29)

where 8p =
[∫

W dw
]1=p

. The claim follows from (28) and
(29), by taking f- = f, with ,6 -, p= ∞ and ,6 -=8p,
p∈ [1;∞).
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Fig. 4. fo(w): dotted line. Measurements: squares. fc(w): solid line. Wf(w),f(w): dashed lines.

In the case of one-dimensional regressor space (n=1), the
functional properties of fc(w) are quite simple. In particular,
fc(w) is piece-wise linear as shown in Fig. 4, where the
regression function fo(w)=sin(w) is identi!ed from T=10
noise corrupted measurements, assuming �=1 and !t =0:1,
∀t. In the case n¿ 2, fc(w) is no more piece-wise linear,
but has a more complex behaviour. Indeed, from Theorem
3 it follows that any given w belongs to some cell WCt of
the HVD WV , related to Wf, and to some cellC 3 of the HVD
V, related to f, i.e. w∈ WCt ∩C 3. From de!nition (16) of
fc(w) and from Theorem 4 it follows that fc(w)=1=2( Wht +
�‖w − w̃t‖ + h3 − �‖w − w̃3‖), i.e the sum of two cones
with vertices coordinates (w̃t ; Wht) and (w̃3; h3). If dimension
of regressor space is n=1, the sum of two cones is a straight
line with angular coe3cient 0 and ±� and then fc(w) is
piece-wise linear. This is not the case if n¿ 2. Recalling
that w̃t ∈ WCt ∩C t , if this set is not empty, it follows that in
such a neighborhood of w̃t , fc(w)= const=ỹ t+1. Note that
such a neighborhood may be empty, see (i) of Theorem 3.
In these cases, fc(w) �= ỹ t+1 for w in a neighborhood of w̃t .
In the example of Fig. 4, this happens for t = 1; 2; 6; 9; 10.
For w∈ WCt ∩C 3 with t �= 3, fc(w) is nor a linear variety nor
a cone, but a more complex surface.

6. Local assumptions and regressors scaling

6.1. Local assumptions

So far a global bound on ‖f′
o(w)‖ over all W is assumed.

However, a local approach can be taken in order to obtain
improvements in identi!cation accuracy, e.g. by assuming

diPerent bounds �k on suitable partitions Wk of W . This is
similar to what done in identi!cation of piece-wise linear
model, where partitionsWk are looked for, over whichfo(w)
can be considered approximately linear, i.e. f′

o(w) � const.,
∀w∈Wk , (see e.g. Sontag, 1981; Ferrari-Trecate, Muselli,
Liberati, & Morari, 2001). However, !nding such partitions
may be not an easy task. A very simple alternative approach
allowing to use local assumptions onfo, is based on the eval-
uation of a function fa approximating fo(using any desired
method) and on the application of the method described in
this paper to the residue function fX(w)

:= fo(w) − fa(w)
using the set of values Xyt+1=ỹ t+1−fa(w̃t), t=1; 2; : : : ; T .
Then, the estimate:

fL
c (w) = fa(w) + fc

X(w) (30)

is used, where fc
X(w) is the central estimate of fX(w)

obtained from data Xyt+1, t = 1; 2; : : : ; T .
Assuming a global bound ‖f′

X(w)‖ = ‖f′
o(w) −

f′
a(w)‖6 �X on the residue function fX implies the lo-

cal bound ‖f′
a(w)‖ − �X6 ‖f′

o(w)‖6 ‖f′
a(w)‖ + �X for

function fo.
If function fa is chosen as the PE estimate within a para-

metric model family f(w; �), the present “local” approach
allows to investigate the ePects of neglected dynamics and
of possible trapping in local minima during the parameter
estimation phase. In fact, if fa and fL

c (w) have compara-
ble identi!cation accuracy, a con!rmation is obtained that
the chosen model family is su3ciently rich to accurately
approximate fo and that a “good” minimum of V (�; �T ),
if not the global one, is reached. On the other hand, model
fL
c (w) may give accuracy improvements over model fa

in case the chosen model family is not su3ciently rich
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and/or minimization of V (�; �T ) got stuck in a local
minimum.
Even in case that the correction term fc

X(w) results to be
negligible, performing the local SM identi!cation method is
useful because allows to derive the following !nite samples
uncertainty bounds on fo(w):

fa(w) +fX(w)6fo(w)6fa(w) + WfX(w);∀w∈W:

(31)

Note that deriving reliable !nite samples results on identi!-
cation accuracy in the context of PE identi!cation methods
is at present a largely open problem.
In Milanese and Novara (2003) the linear regression

choice fa(w) = �w is investigated. In particular, conditions
are given assuring boundedness of simulation error.

6.2. Regressors scaling

The problem of selecting suitable scalings of regressors is
now investigated, in order to adapt to the properties of data.
Suitable scaling may turn out to be important when the gradi-
ent components have quite diPerent magnitudes, (Stenman,
Gustafsson, & Ljung, 1996; Wasilkowski &Wo>zniakowski,
2001). The problem is posed as follows. Some estimates of
the quantities :i =maxw∈W |@fo(w)=@wi|, i=1; 2; : : : ; n can
be derived (e.g. from a neural approximation of fo or di-
rectly from data). Here, wi denotes the i-the component of
vector w∈W ⊆ Rn. These estimates support the evidence
that:

fo ∈F(�):∞
:= {f∈C1 : ‖f′(w)‖:

∞6 �;∀w∈W};
where ‖x‖:

∞
:= maxi=1; :::; n |xi|:−1

i , :i ¿ 0 denotes the
weighted ‘∞ norm.
Then, fo ∈F(�):∞ could be used as prior assumption on

the unknown function fo. Unfortunately, dealing with such
a type of prior appears not easy, and weighted l2 bounds on
the gradient are used, of the form:

fo ∈F(�)=2
:= {f∈C1(W ) : ‖f′(w)‖=

26 �;∀w∈W}

where ‖x‖=
2

:=
√∑n

i=1 =ix2i .
Outer approximations F(�)=2 ⊇ F(�):∞ can be looked

for, by suitably choosing =. Since F(�)=2 ⊇ F(�):∞ ⇔
B=
2 ⊇ B:

∞, where B=
2

:= {x∈Rn : ‖x‖=
26 1}, B:

∞
:=

{x∈Rn : ‖x‖:
∞6 1}, the problem is equivalent to look, in

the n-dimensional gradient space, for outer approximations
of the weighted ‘∞ ball B:

∞ with a weighted ‘2 ball B=
2. By

taking the ratio of the volumes of the two balls as measure
of approximation goodness, minimal volume outer approx-
imation is optimal. The following lemma shows how the
optimal solution can be obtained.

Lemma 2. The optimal (minimal volume) outer approxi-
mation B=

2 of B
:
∞ is given by =i = (n:2

i )
−1; i = 1; : : : ; n.

Proof. Trivial application of Lagrangian multipliers.

Let us de!ne the scaled regressors vi = 1=
√
=iwi,

i = 1; 2; : : : ; n and, with a slight abuse of notation, de-
note f(w) = f(wi; : : : ; wi) = f(

√
=1vi; : : : ;

√
=nvi) =

f(v). Then @f(v)=@vi = @f(w)=@wi
√
=i and ‖f′(w)‖=

2 =√∑n
i=1 =i(@f(w)=@wi)2 = ‖f′(v)‖. Thus, considering the

scaled regressors v, a bound on the euclidean norm of
gradient is obtained. The results presented in the previous
sections can be directly applied by substituting regressors
w with scaled regressors v.

7. Summary of the NSM identi�cation process

The main steps of proposed method are now summa-
rized. The case of global assumptions on ‖f′(w)‖ is consid-
ered. Minor modi!cation are required for the case of local
assumptions.
(1) Partition the data to be used for the identi!cation in

two parts. The !rst T data, called estimation data, are used
in steps 2,3,4 and 6. The remaining data, called calibration
data, are used in step 5 for the selection of �; !r ; !a values.
De!ne the range of interest of regressors:

w∈W = {[w1; Ww1] × · · · × [wn; Wwn]}:
(2) Perform a preliminary rough estimate fb(w) of fo(w)
by some identi!cation method.
(3) Compute :i=maxw∈W |@fb(w)=@wi|, i=1; 2; : : : ; n and

consider the scaled regressors:

vi =
wi√
=i
; i = 1; 2; : : : ; n; =i = (n:2

i )
−1:

Let

V = {[w1=
√
=1; Ww1=

√
=1] × · · · × [wn=

√
=n; Wwn=

√
=n]}

and f(v) = f(
√
=1vi; : : : ;

√
=nvi).

(4) Compute the surface �∗(!r ; !a) de!ned by (14) on a
suitable range of values of (!r ; !a). This task is performed
by means of theorem 1, using not the original regressors wt

but the scaled regressors vt instead.
(5) Select (�; !r ; !a) values in the validated region. A rea-

sonable choice is �̂ ∼= maxv∈V ‖f′
b(w)‖, !̂a ∼= accuracy

of device used for yt measurements and !̂r in the vali-
dated region, giving the minimum of RMSE(!r ; �̂; !̂a), where
RMSE(!r ; �; !a) is the simulation error on the calibration set
of the regression model computed as in step 6 for given
�; !r ; !a.

(6) The identi!ed regression model is

yt+1 = fc(vt) = fc

(
yt

√
=1

; : : : ;
yt−ny+1

√=ny+1
; : : : ;

ut−nm+1
m√

=n

)
;

where fc(v) = 1
2 [f(v) + Wf(v)] andf(v), Wf(v) are given in

Theorem 2 by substituting w with scaled regressors v, and
using the selected values �̂; !̂r ; !̂a.
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It must be remarked that in the paper and in the above
described procedure, given values of regression orders ny,
n1; : : : ; nm are considered. In practical applications, these val-
ues are seldom known and have to be suitably chosen. Sev-
eral approaches have been proposed in the literature for this
task (SjGoberg et al., 1995). In the examples presented in
Section 8, we used the simple and widely used approach of
performing the identi!cation for diPerent choices of regres-
sion orders, evaluating for each identi!ed model an index
of its predictive ability and choosing the regression orders
giving the best index. In the presented examples, the index
is RMSE(!̂r ; �̂; !̂a).

8. Examples

8.1. Example 1: water heater

In this example we investigate the water heater identi!-
cation problem considered also in (Stenman et al., 1996).
The system (see Fig. 5) is constituted by a volume of wa-
ter heated by a resistor element. The heating process can be
described by an output variable, i.e. the temperature T t of
the water, and by an input variable, i.e. the voltage ut that
controls the resistor by means of a thyristor. It is expected
that the main nonlinearity is due to nonlinear characteristic
of the thyristor.
The dataset is composed by a series of 3000 samples

of T t and ut recorded every 3 s. According to what done
in Stenman et al. (1996), the dataset is divided into an
identi!cation set, composed by the !rst 2000 data, and a
validation set, composed by the remaining 1000 data (see
Fig. 6). The identi!cation set was used to identify two Non-
linear Set Membership models and a neural networks model.
The validation set was used to test the identi!ed models
in simulation and to compare the simulation performances
with those presented in Stenman et al. (1996), where a just
in time model (JIT) and a fuzzy model are considered.
The following regression has been considered in all these

methods:

yt+1 = f(wt) wt = [T t T t−1 ut−3ut−4]: (32)

This is the choice of regressors made in Stenman et al.
(1996) and no other sets of regressors have been looked for,
in order to allow a fair comparison with the results reported
in Stenman et al. (1996).

8.1.1. Neural network model NN
The NN model is obtained by taking:

f(wt) =  (wt);

where the function  is a one hidden layer neural network
(see e.g. Hertz, Krogh, & Palmer, 1991; Vapnik, 1995) com-
posed by r neurons:

 (wt) =
r∑

l=1

�l�(�lwt − Bl) + C: (33)

Fig. 5. Example 1. Heater.

Here �l, Bl; C∈R; �l ∈Rn; are parameters and �(x)=2=(1+
e−2x)−1 is a sigmoidal function. Several neural networks of
the form (33) with diPerent values of r (from r=3 to r=20)
have been trained on the identi!cation set. A neural network
with r = 8, showing the best performances in simulation,
has been chosen for the model NN.

8.1.2. Nonlinear set membership model NSMG
The NSMG model has been obtained assuming a global

bound on the function gradient. According to Step 1 of Sec-
tion 7, the identi!cation dataset has been splitted in two sub-
set. The data from 1 to 1700 have been taken as estimation
set, the data from 1701 to 2000 have been taken as calibra-
tion set. The range of interest of regressors has been chosen
as W = {[10; 50] × [10; 50] × [0; 1] × [0; 1]}. The estimate
fb(w) =  (w) has been used at Step 2, where  (w) is the
neural network used for the model NN.
The scaled regressors =t used for the estimation of central

function are

vt =
[

T t

√
=1

T t−1

√
=2

ut−3

√
=3

ut−4

√
=4

]
; (34)

where the scaling vector = = [2:4 6:9 0:01 0:01] has been
derived as described in Step 3.
A global bound ‖f′(v)‖6 � and a noise bound

|dt |6 !r|yt+1| + !a, ∀t, have been assumed.
According to Step 5, �̂=2:7 and !̂a=0:5 have been chosen.

Indeed, it resulted maxv∈V ‖f′
b(v)‖ = 2:5 and the accuracy

of temperature sensor is ±0:5◦C. In order to choose !r , the
validation surface �∗(!r ; !a) has been computed according
to Step 4. The section �∗(!r ; 0:5) is shown in Fig. 7, where
the level curves of RMSE(!r ; �; 0:5) are also reported. The
value of !̂r = 0:03 has been chosen, which corresponds to
the minimum of RMSE(!r ; 2:7; 0:5) in the validated region.
Note anyway that the choice of these values is not critical,
as shown in Fig. 7, where RMSE(!r ; �) is not very variable
in a quite large neighborhood of the selected values (!̂r ; �̂)=
(0:03; 2:7).
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Fig. 6. Example 1. Heater dataset. Bold line: identi!cation set. Dashed line: testing set.

Fig. 7. Example 1.RMSE(!r ; �) level curves (thin lines) and validation curve �∗(!r ; 0:5) (bold line) for NSMG model.

The NSMG model is the regression model yt+1 =fc(vt),
where fc is the central function derived as described in
Step 6.

8.1.3. Nonlinear set membership model NSML
The NSML model was obtained by means of the local

approach described in Section 6.1 by taking fa(w) =  (w),
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Table 1
Example 1: simulation errors on the validation dataset

Model NSMG NSML NN JIT Fuzzy

RMSE 0.96 0.70 0.80 0.89 1.02

where  (w) is the neural network used for model NN. The
procedure of Section 7 has been applied considering the
residue function fX(w)

:= fo(w)−fa(w) and using the data
Xyt+1 = ỹ t+1 −  (w̃t), t=1; 2; : : : ; T . The same splitting of
identi!cation data and same range of regressors as for the
model NSMG are used.
The estimate fb(w) =  X(w) has been used at step 2,

where  X(w) is a neural sigmoidal network with 6 neurons
estimated using the residue data Xyt .
The regressors have been scaled as in (34) by means of

the scaling vector == [6:8 6:7 0:12 0:12], derived according
to Step 3.
A bound ‖f′

X(v)‖6 �X on the gradient of residue
function fX(v) = fo(v) − fa(v) and a noise bound
|dt |6 !r|Xyt+1| + !a, ∀t, have been assumed.
According to Step 5, �̂X = 0:07 and !̂a = 0:5 have been

chosen. Indeed, it resulted maxv∈V‖f′
b(v)‖=0:06 and the ac-

curacy of temperature sensor is ±0:5◦C. In order to choose
!r , the validation surface �∗(!r ; !a) has been computed ac-
cording to Step 4. The value of !̂r = 0:85 has been chosen.
The NSML model is the regression model yt+1 = fL

c (v
t) =

 (vt) + fc
X(v

t), where fc
X is the central estimate of fX de-

rived as described in Step 6.
The models NN, NSMG and NSML have been tested in

simulation of the validation dataset. In Table 1 the root mean
squared errors (RMSE) obtained on such validation data
not used for identi!cation are reported and compared with
those obtained by the JIT and Fuzzy models considered in
Stenman et al. (1996). In Fig. 8 simulation of model NSML
on the validation data is shown.

8.2. Example 2: Mechanical system with input saturation

A set of 6000 data has been generated from the fol-
lowing nonlinear system yt+1 = 1:8yt − 0:82yt−1 + 0:0024
sin(yt−1) + 0:047 tanh(3ut), representing a discrete-time
approximation of a mass-spring-damper system with linear
spring, nonlinear damper and static nonlinearity on the in-
put (see Fig. 9). Input u is the force acting on the mass and
output y is the mass position.
A random input of amplitude 6 1 has been used. The

output data have been corrupted by a uniform random ad-
ditive noise of amplitude6 0:025. The !rst 5000 data have
been used for model identi!cation, the remaining 1000 data,
called validation set, have been used for model testing.
The following models have been identi!ed. For all of

them, regressions of the form

yt+1 = f(wt); wt = [yt yt−1 ut]

have been considered.

8.2.1. Nonlinear set membership local model NSML
The NSML model was obtained by means of the local ap-

proach described in Section 6.1 by taking fa(w)=�w, where
�=[1:8 −0:81 0:06] has been estimated by means of theMat-
lab Systems Identi!cation Toolbox using the output error
estimation method. The procedure of Section 7 has been ap-
plied considering the residue function fX(w)

:= fo(w)−�w
and using the data Xyt+1 = ỹ t+1 − �(w̃t), t = 1; 2; : : : ; T .
The !rst 4000 data of the identi!cation set have been taken
as estimation set and the last 1000 data have been used as
calibration set. No regressor scaling has been performed.
A bound ‖f′

X(v)‖6 �X on the gradient of residue function
fX(w)=fo(w)−�w and an absolute noise bound |dt |6 !a,
∀t have been assumed.
According to Step 5, �̂X = 0:0024 and !̂a = 0:08 have

been chosen. The NSML model is the regression model
yt+1 = fL

c (w
t) = �wt + fc

X(w
t), where fc

X is the central
estimate of fX, derived as described in Step 6.

8.2.2. Neural network models NARX and NOE
The NARX and NOE models have been obtained con-

sidering one hidden layer neural networks of the form (33)
for the regression function. Several NARX and NOE neu-
ral network models with diPerent values of r (from r=3 to
16) have been trained on the estimation set using the Mat-
lab Neural Networks Toolbox. The NARX model with r=8
has been chosen, showing the best simulation performances.
All the NOE identi!ed models got stuck on (possibly) local
minima during the training phase, providing bad simulation
performances. The best result has been obtained by using as
starting point the parameters of the selected NARX model.
In Table 2 the root mean square errors obtained by the

identi!ed models on the validation dataset are reported. The
simulation error is indicated as RMSES and the one-step
ahead prediction error is indicated as RMSEP. It can be noted
that the accuracy improvements of the NSML model over
the NARX and NOE models, though moderate for one-step
ahead prediction, are quite signi!cant in simulation.
In Fig. 10, a portion of validation data and NSML and

NOE models simulation are shown.

8.3. Example 3: Vehicles with controlled suspensions

Identi!cation of vehicle vertical dynamics is considered in
this example. Models of vehicles vertical dynamics are very
important tools in the automotive !eld, especially in view
of the increasing diPusion of controlled suspension systems
(Krtolica & Hrovat, 1992; Lu & DePoyster, 2002). Indeed,
accurate models may allow e3cient tuning of control al-
gorithms in computer simulation environment, thus signi!-
cantly reducing the expensive in-vehicle tuning ePort.
Identi!cation is performed on simulated data obtained by

the half-car model with controlled suspensions shown in
Fig. 11. Identi!cation results using experimental data are
reported in Milanese, Novara, Mastronardi, and Amoroso
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Fig. 8. Example 1. Simulation of model NSML (thin line) on the validation data (bold line).

Fig. 9. Example 2. Nonlinear mass-spring-damper system.

Table 2
Example 2. One-step ahead prediction and simulation errors

Model NSM NNnarx NNnoe

RMSEP 0.005 0.008 0.009
RMSES 0.091 0.299 0.262

(2004b) and Milanese, Novara, Gabrielli, and Tenneriello
(2004a).
The half-car model, called for short “true system”, has

been implemented in Simulink in order to obtain data sim-

ulating a possible experimental setup, characterized by type
of exciting input, experiment length, variables to be mea-
sured and accuracy of sensors. The vehicle is assumed to
travel in a constant speed V =60 km=h. The main variables
describing the model are:

• prf and prr: f ront and rear road pro!les.
• isf and isr: control currents of front and rear
suspensions.

• acf and acr: front and rear chassis vertical accelerations.
• pcf and pcr: front and rear chassis vertical positions.
• pwf and pwr: front and rear wheels vertical positions.
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Fig. 10. Example 2. Validation set: data (bold line), NSML simulation (thin line) and NOE simulation (dashed line).

Fig. 11. Example 3. The half-car model.

It is considered that the road pro!le prf (t) is known, that
prr(t) = prf (t − ‘=V ), that currents isf (t) and isr(t) can be
measured with a precision of 3:75% and that variables acf (t),
acr(t) can be measured with a precision of 5%.
The chassis, the engine and the wheels are simulated as

rigid bodies. The following static nonlinear characteristic
has been assumed for tires:

F1(t) = F1E(Xp1(t)) + �1Xv1(t);

where F1 is the tire force, Xp1 and Xv1 are the diPer-
ences of position and velocity at the extremes of tire, �1 =
10 000 Ns=m and F1E(Xp1) is shown in Fig. 12b. The fol-
lowing nonlinear characteristic has been assumed for con-
trolled suspensions:

F2(t) = K2Xp2(t) + F2D(Xv2(t); i(t));

where F2 is the suspension force, Xp2 and Xv2 are the dif-
ferences of position and velocity at the extremes of suspen-
sion, i is the control current, K2 = 17200 N=m, F2D(Xv2; i)
is shown in Fig. 12a for the two extreme values i = 0 A
and 1:6A.
A dataset has been generated from “true system” simula-

tion, for a period of 24 s, using a random pro!le with am-
plitude 6 4 cm. The dataset consists of the values of prf ,
prr , isf , isr, acf recorded with a sampling time of 3= 1

512 s.
The sequence of each measured variables is composed of
12 280 samples. The values of acf have been corrupted by
uniformly distributed noises of relative amplitude 5% and
the values of isf and isr have been corrupted by uniformly
distributed noises of relative amplitude 3.75%. The dataset
related to the !rst 20 s, called identi!cation dataset, has been
used for models identi!cation. The dataset related to the
last 4 s, called validation dataset, has been used to test the
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Fig. 12. Example 3. (a) Force–velocity chracteristic F2D of suspension. (b) Force–displacement characteristic F1E of tires.

simulation accuracy of identi!ed models. The experimental
setup simulated here has been chosen because not too com-
plex to be realized in actual experiment on real car (Milanese
et al., 2004a, b). Two models, relating front chassis accel-
erations to the road pro!le at the sampling times, have been
identi!ed from the identi!cation dataset. The models are of
the form

yt+1 = f(wt);

wt = [yt : : : yt−7 ut
1 : : : u

t−2
1 ut

2 : : : u
t−2
2 ut

3 ut
4]

with yt = acf (t3), ut
1 =prf (t3), ut

2 =prr(t3), ut
3 = isf (t3) and

ut
4 = isr(t3). The regressors orders ny = 8, n1 = 3, n2 = 3,

n3 = 1, n4 = 1 have been chosen as described in Section 7.

8.3.1. Neural network model NN
The NN model is obtained by taking:

f(wt) =  (wt);

where the function  is a one hidden layer sigmoidal neural
network of the form (33). Several neural networks with
diPerent values of r (from r=3 to 20) have been trained on
the identi!cation set. A neural network with r=6, showing
the best performances in simulation, has been chosen for the
model NN.

8.3.2. Nonlinear Set Membership model NSML
The NSMLmodel has been obtained by means of the local

approach described in Section 6.1 with fa(w)= (w), where
 (w) is the neural network used for model NN. The proce-
dure of Section 7 has been applied considering the residue
function fX(w)

:= fo(w)−fa(w) and using the residue data
Xyt+1 = ỹ t+1 −  (w̃t), t = 1; 2; : : : ; 12 280. The 7680 data
corresponding to the !rst 15 s of the identi!cation set have
been taken as estimation set, the 1536 data corresponding
to the last 5 s have been taken as calibration set.

Table 3
Example 3: simulation errors on the validation dataset

Model NSML NN

RMSE 0.65 0.66

The scaling vector = = [0:95; 0:95; 0:95; 0:95; 0:95; 0:95;
0:95; 0:95; 10; 10; 10; 1; 1; 1; 1; 0:5] has been evaluated ac-
cording to step 3 with fb(w) =  X(w), where  X(w) is a
neural sigmoidal network with 6 neurons, estimated using
the residue data Xyt .
A bound ‖f′

X(v)‖6 �X on the gradient of residue
function fX(v) = fo(v) − fa(v) and a noise bound
|dt |6 !r|Xyt+1| + !a, ∀t, have been assumed. The values
!̂a = 0:05, !̂r = 0:7, �̂ = 0:2 have been chosen, according
to the procedure described in Steps 4 and 5 and using the
residue data Xyt .
The NSML model is the regression model yt+1=fc

L (v
t)=

 (vt) +fc
X(v

t), where fc
X is the central function derived as

described in Step 6.
The models NN and NSML have been tested in simulation

on the validation set. The root mean square simulation errors
(RMSE) obtained by models NN and NSML on this dataset
are reported in Table 3. In Fig. 13, a portion of “true” data
and of the ones simulated by the identi!ed NSML model
are reported.

9. Conclusions

In the paper, a method for identi!cation of nonlinear
systems described in the form of nonlinear regressions has
been presented, based on a SM approach. The novelty is
that the method does not assume to know the functional
form of nonlinear regression function, in contrast with most
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Fig. 13. Example 3. Front chassis accelerations: “true” (bold line), NSML model simulation (thin line).

methods of the literature, which assume that it belongs
to a !nitely parametrized family. Thus, the method does
not require extensive searches of such functional form and
reduces the ePects of modeling errors due to the use of
approximate forms. Moreover, the noise is assumed only to
be bounded, in contrast with standard approaches, relying
on statistical assumptions such as stationarity, uncorrela-
tion, etc., whose validity is di3cult to be reliably checked
and anyway is lost in presence of approximate modeling.
On the basis of these theoretical features, it is expected that
models obtained by means of the proposed method may
have good performance and exhibit good robustness ver-
sus imprecise knowledge of involved nonlinearities and of
noise properties. These expectations appear to be con!rmed
by the examples presented here and by the applications
reported in Novara and Milanese (2001), Milanese and
Novara (2002), Milanese et al. (2004a) and Milanese,
Novara, Volta, and Finzi (2003).
It can be noted that the present SM approach and the meth-

ods based on estimation within a parametric model family
can be usefully applied in a complementary way. Indeed,
the NSML models, obtained from local assumptions on the
gradient of fo as described in Section 6, simply consists in a
correction term to an initial estimate of the regression func-
tion, applying the basic SMmethod to the residuals. Suppos-
ing that the initial regression is obtained by a parametric es-
timation within a parametric model family, if the correction
term is negligible, a con!rmation is obtained that the cho-
sen model family is su3ciently rich to accurately approx-
imate fo and that a “good” minimum of the loss function,
if not the global one, is reached. On the other hand, NSML
model may give accuracy improvements over the estimated

parametric model in case the chosen model family is not
su3ciently rich and/or minimization of got stuck in a local
minimum. In any case, the SM identi!cation method allows
to derive the !nite samples uncertainty bounds on fo(w),
which can be useful for further robustness investigations,
such as guaranteed stability of simulation errors (Milanese
& Novara, 2003) or robust control design.
In conclusion, the new approach to nonlinear systems

identi!cation presented in this paper appears to be quite
promising and at present is under test on larger classes of
applications. Also, many important problems remain open,
such as complexity analysis, input excitation conditions, sta-
bility of solutions of identi!ed models, and are currently
under investigation.
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